Improving Kinematic accuracy by means of multi-constellation PPP-RTK

Javier Tegedor

Fugro Satellite Positioning AS
Norwegian University of Life Sciences (NMBU)

Geodesi- og hydrografidagene, Stavanger, 2014
Contents

- PPP-RTK: ambiguity-fixed Precise Point Positioning
- Estimation of Uncalibrated Hardware Delays for Galileo
- Multi-constellation PPP-RTK in a maritime dynamic environment
PPP vs RTK

<table>
<thead>
<tr>
<th>RTK</th>
<th>PPP</th>
<th>PPP-RTK (PPP-AR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Relative positioning</td>
<td>- Absolute positioning</td>
<td>- Absolute positioning</td>
</tr>
<tr>
<td>- Differential carrier-phase observations rover-base station</td>
<td>- Undifferenced observations from single station</td>
<td>- Undifferenced observations from single station</td>
</tr>
<tr>
<td>- GNSS errors are largely cancelled by double-differencing</td>
<td>- Requires precise modeling of GNSS errors (orbits, clocks, troposphere, etc…)</td>
<td>- Requires precise modeling of GNSS errors (orbits, clocks, troposphere, etc…)</td>
</tr>
<tr>
<td>- Integer resolution of double-differenced carrier-phase ambiguities</td>
<td>- No ambiguity resolution (float ambiguities)</td>
<td>- Possible to fix ambiguities at single-station PPP</td>
</tr>
<tr>
<td>- Position accuracy depends on distance to reference stations</td>
<td>- Homogeneous accuracy</td>
<td>- Homogeneous accuracy</td>
</tr>
<tr>
<td>- Dense network needed</td>
<td>- Sparse network required</td>
<td>- Sparse network required</td>
</tr>
</tbody>
</table>

Absolute positioning
- Requires precise modeling of GNSS errors (orbits, clocks, troposphere, etc…)
- Possible to fix ambiguities at single-station PPP
- Better than float PPP
- Sparse network required

Relative positioning
- Differential carrier-phase observations rover-base station
- GNSS errors are largely cancelled by double-differencing
- Integer resolution of double-differenced carrier-phase ambiguities
- Position accuracy depends on distance to reference stations
- Dense network needed
Fixing ambiguities in PPP

- Traditional ionosphere-free float-PPP does not allow integer ambiguity resolution due to the presence of satellite and receiver delays
 - Uncalibrated Hardware Delays (UHDs)

- PPP-RTK is based on the estimation of these UHDs in order to resolve carrier-phase ambiguities

- Several approaches have been developed in recent years for GPS:
 - Single Difference Approach (GFZ)
 - Decoupled Clock Model (NRcan)
 - Integer Clock Method (CNES)

- Extension of the method to Galileo
Galileo sats 5-6

- Galileo IOV data has been used in this study
 - First 4 satellites E11 E12 E19 E20

- Galileo FOC satellites 5&6 were injected into wrong orbit due to an anomaly in the Soyuz upper-stage
 - Navigation payload not active yet
Galileo data tracking

- For Galileo orbit and clock estimation, observation data from the IGS Multi-GNSS Experiment (MGEX) is used
 - Ionosphere-free linear combination of E1 and E5a frequencies
Galileo orbit accuracy

- Day boundary differences for central 24 hours of 3-day orbit arcs
Compatibility of receiver types for Galileo PPP-RTK

- Need to verify the compatibility of receiver types for Galileo ambiguity-fixing
- Observation data collected by the University of New Brunswick (Canada)
 - UNB3: Trimble NETR9
 - UNBD: Javad Delta G3T
 - UNBS: Septentrio PolaRx4
Compatibility of receiver types for Galileo PPP-RTK

- Single-differences E11-E19 for May 5th, 2014
Compatibility of receiver types for Galileo PPP-RTK

- Melbourne-Wübbena measurements used to derive WL ambiguity
 - Higher noise observed for the Javad receiver UNBD
Network UHD-estimation

- It is challenging to estimate UHDs for Galileo with few satellites available.
- In order to improve satellite observability, a network densification was performed using data from the European Permanent Network (EPN).
- Mix of receiver types for UHD estimation.
UHDs for Galileo

- Single difference UHDs (E20 is the reference satellite)
UHD residual

- Ambiguity-residuals after applying UHDs

Wide-Lane

Narrow-Lane
UHD residual

- Comparison between GPS and Galileo

![Graphs showing comparison between GPS and Galileo for Wide-Lane and Narrow-Lane UHD residuals.](image-url)
PPP-RTK tests with Galileo

Trimble NETR9
Septentrio PolarRX4
Javad Delta G3T
PPP-RTK tests with Galileo

Horizontal PPP results

Position Error RMS (cm)

GPS (float) + Galileo (float)
GPS (float) + Galileo (fixed)
GPS (fixed) + Galileo (fixed)
PPP-RTK tests with Galileo

Vertical PPP results

Position Error RMS (cm)

- GPS (float) + Galileo (float)
- GPS (float) + Galileo (fixed)
- GPS (fixed) + Galileo (fixed)
Multi-constellation PPP in a dynamic environment

- ‘Baronen’ passenger ferry navigating in Oslo fjord
- 2 Fugro 9205 Multi-GNSS receivers installed on board
Antenna locations

- Vessel equipped with 2 Trimble GA810 antenna, separated about 15 meters away
Vessel’s trajectory
Satellite visibility from Oslo

- Galileo satellites visible few hours per day
- Continuous BeiDou tracking
- BeiDou GEO G05 visible from Oslo at low elevation (12 degrees)
PPP results in dynamic environment

- Multi-constellation PPP solutions computed independently for each antenna on-board
 - Computed difference between epoch-wise positions
 - 'True' baseline is 15.69 m
 - Reduced baseline noise when using multi-constellation PPP
PPP-RTK results in dynamic environment

- UHDs generated from a reference station in Fugro premises in Oslo:
 - UHDs for GPS, Galileo and BeiDou
 - Used to fix ambiguities in the moving vessel

- PPP and PPP-RTK solutions compared for different multi-constellations configurations
Conclusions

- **Galileo PPP-RTK**
 - Demonstrated the feasibility of fixing Galileo ambiguities in PPP
 - Promising results in the estimation of the UHDs
 - Contribution in the position domain still limited by:
 - Number of satellites available
 - Satellite modelling for precise orbit/clock estimation

- **Multi-constellation PPP in a maritime dynamic environment**
 - Small position improvement when adding Galileo and BeiDou
 - Best accuracy obtained when using all 4 GNSS in PPP-RTK mode
 - Significant increase in robustness and availability when using multi-constellation
 - Specially in difficult tracking conditions (scintillation, interference, etc)